Module 10: Response Surface Methodology DAV-6300-1: Experimental Optimization

David Sweet // 20241114

Review: Thompson sampling

- Allocate observations to arms in proportion to the probability each arm is best
 - $p_{arm} \propto p_{best}$
- Stop when $\max\{p_{\text{best}}\} > 0.95$

Review: A/B Test

• Goal: Accept or reject B

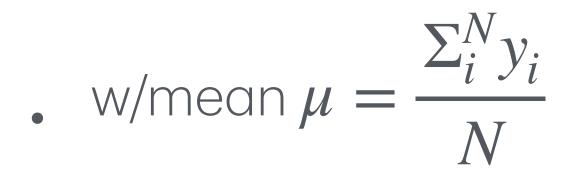
. Design:
$$N \ge \left(\frac{2.5\hat{\sigma}_{\delta}}{PS}\right)^2$$

- Measure: Replicate (reduce variance), Randomize (reduce bias)
- Analyze:

Criterion 1: $\delta > 1.6se \ (t > 1.6)$ **Criterion 2**: $\delta > PS$

Review: Law of Large Numbers

• Nobservations, $y_{i'}$ the business metric



- As $N \to \infty, \mu \to E[y]$
- IOW: Our measurement (μ) estimates the true, unobservable business metric

Key Terms

- Surrogate
- Response surface
- OFAT (One Factor At a Time)

- In prod (A): Ranking songs by $p_{\text{listen}} = P\{\text{user will listen until the end}\}$
- In dev (B): Ranking songs by $p_{\text{like}} = P\{\text{user will click song's like button}\}$
- A/B test the two models?
- Why not use both? Rank by a score:

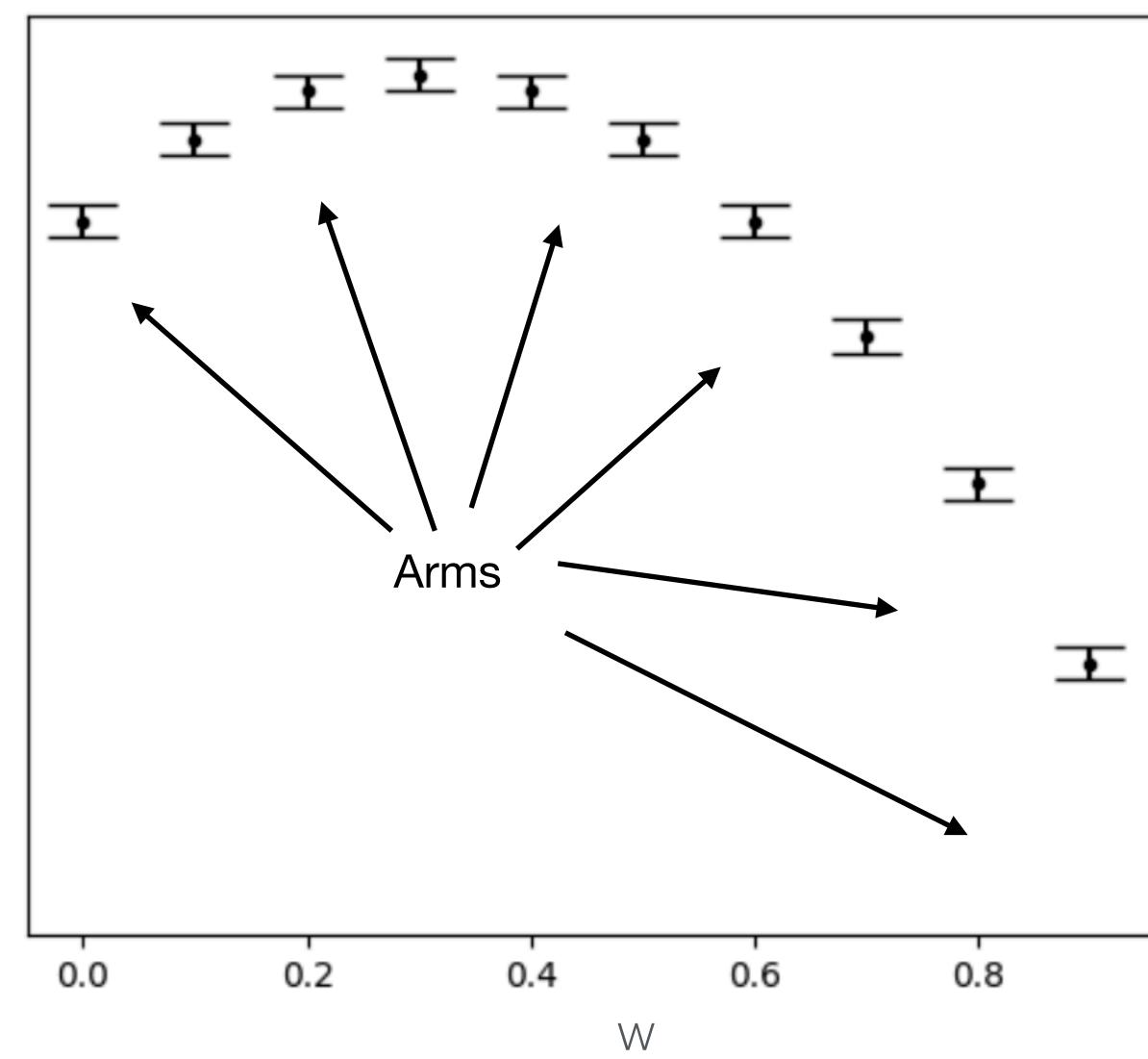
score = $wp_{\text{listen}} + (1 - w)p_{\text{like}}$

• Combine models, $w \in [0,1]$

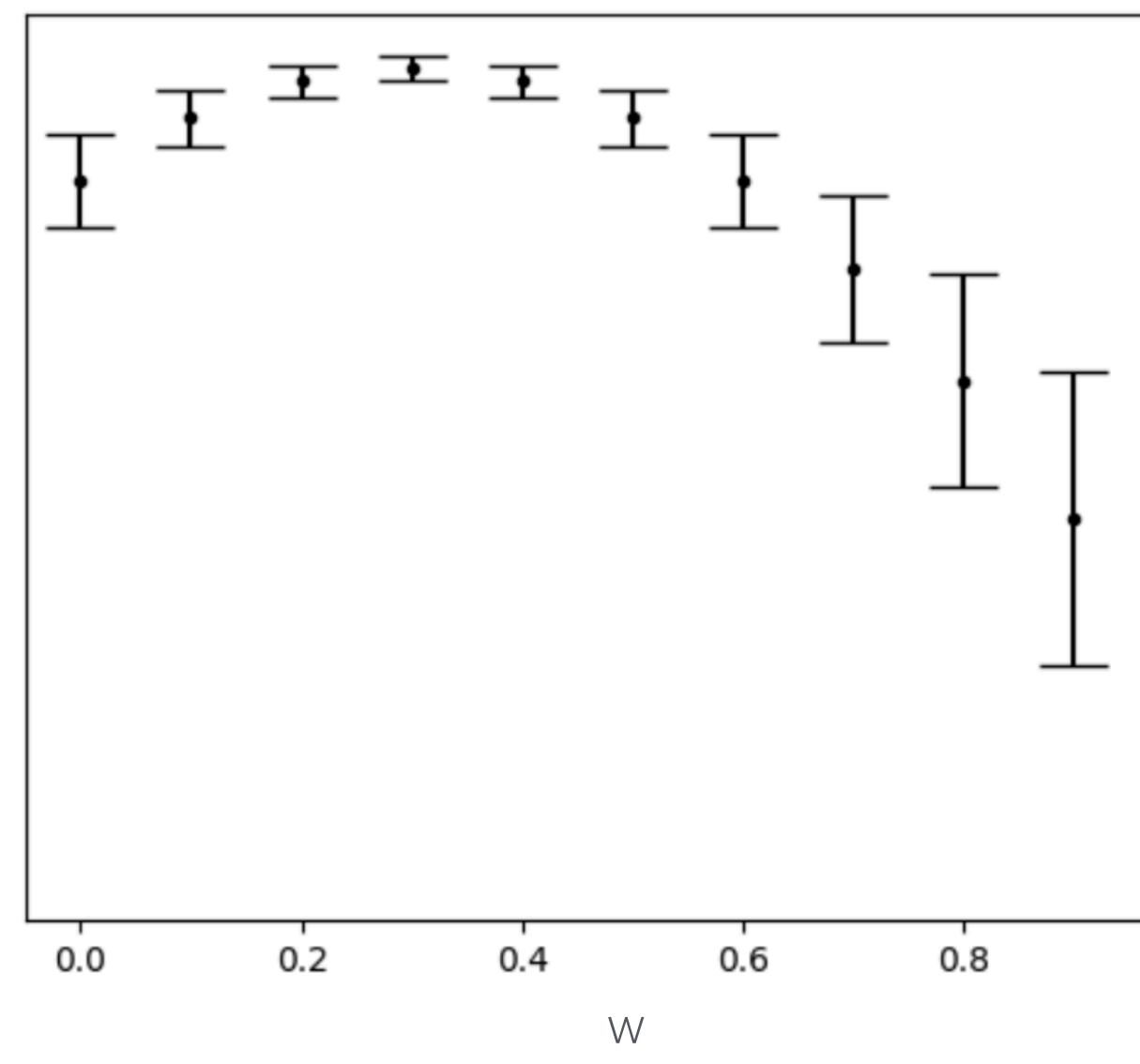
score = $wp_{\text{listen}} + (1 - w)p_{\text{like}}$

- Find w that gives highest BM
 - ... via experimental optimization

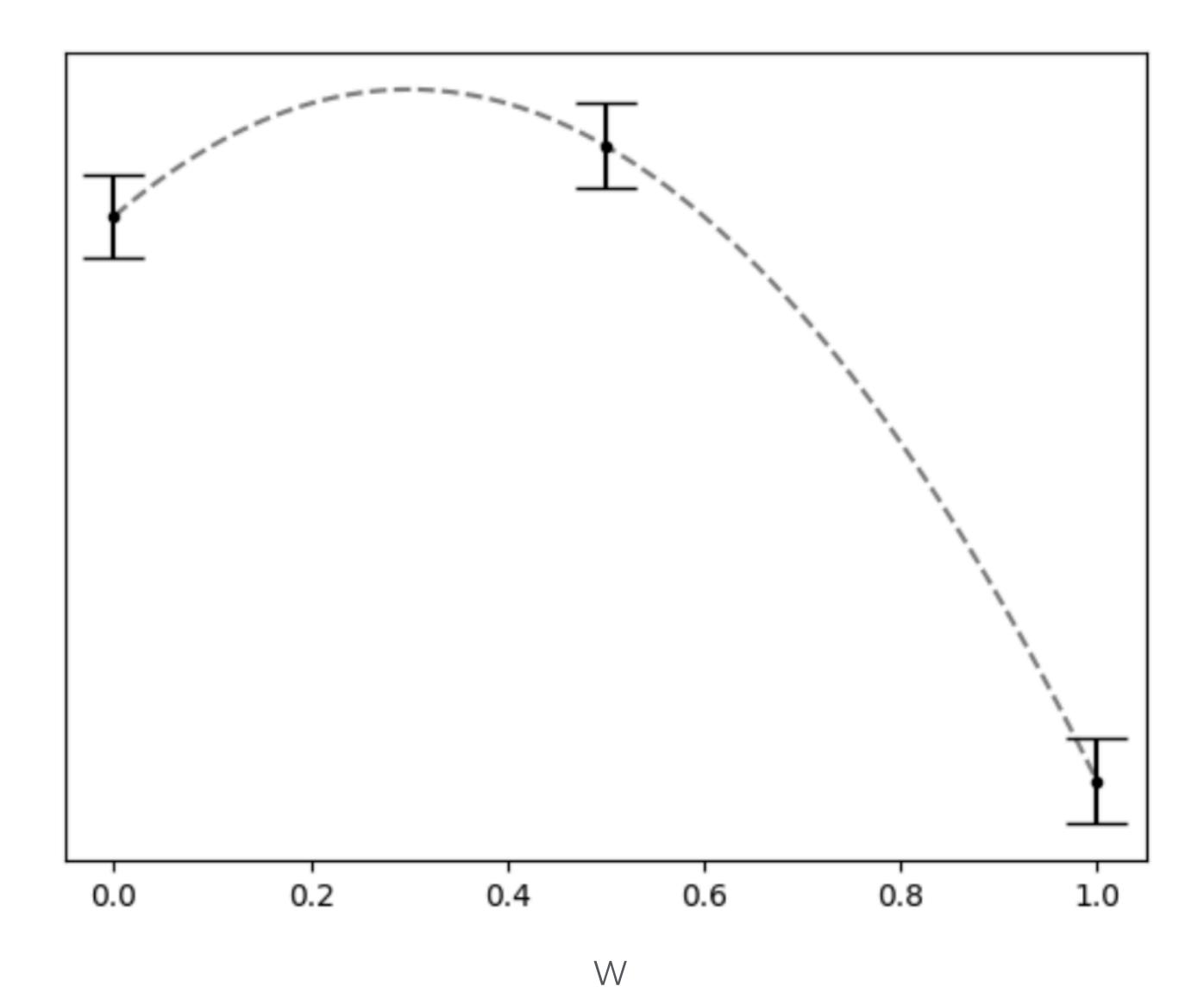
- Approach I: A/B/n test
- Measure $w \in \{0, 0.1, 0.2, ..., 1.0\}$
- Req. many observations:
 - Lots of capacity
 - Bonferroni



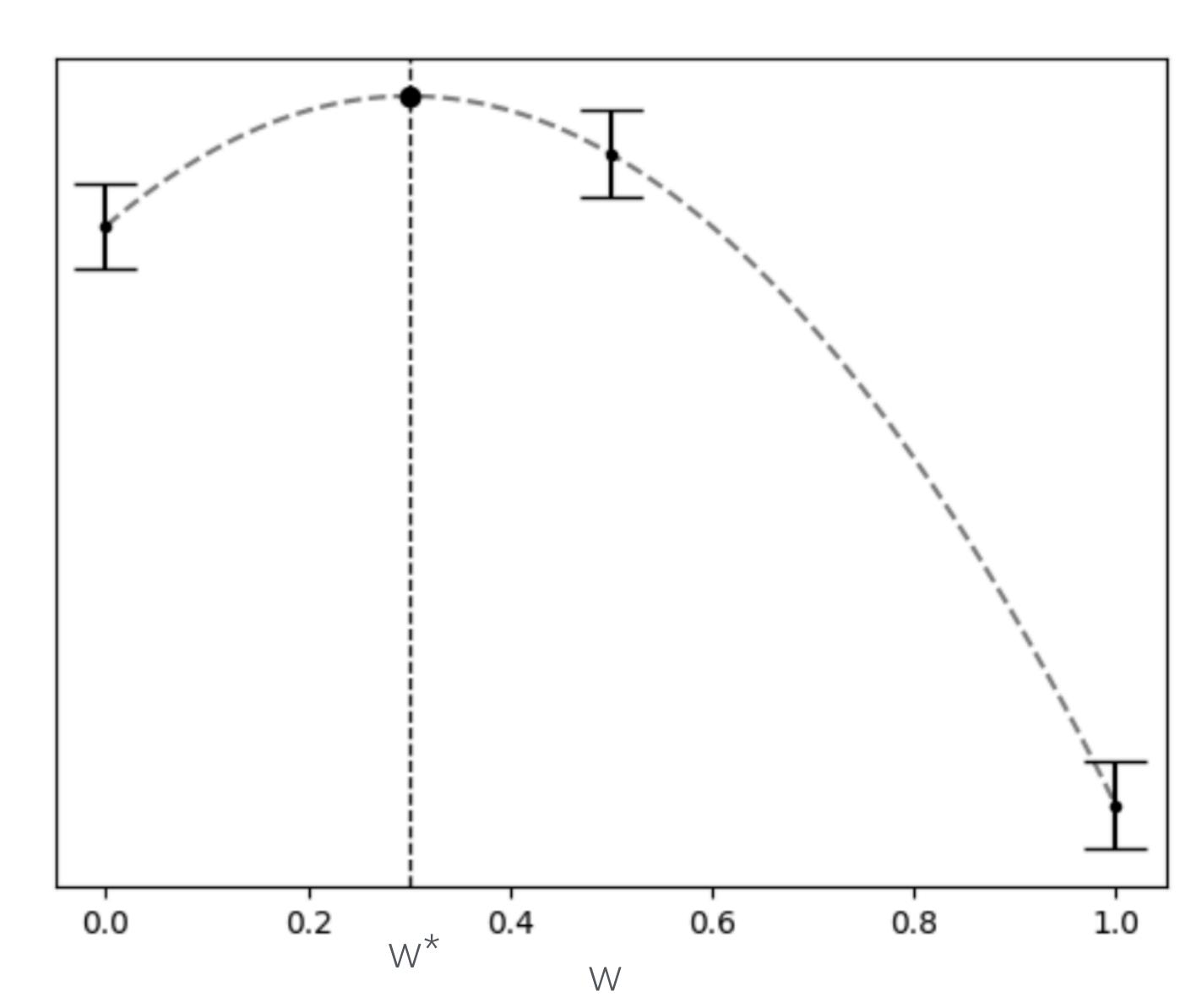
- Approach II: Multi-armed bandit
- Same number of arms
- Fewer observations than A/B/n:
 - Worse arms are allocated fewer observations



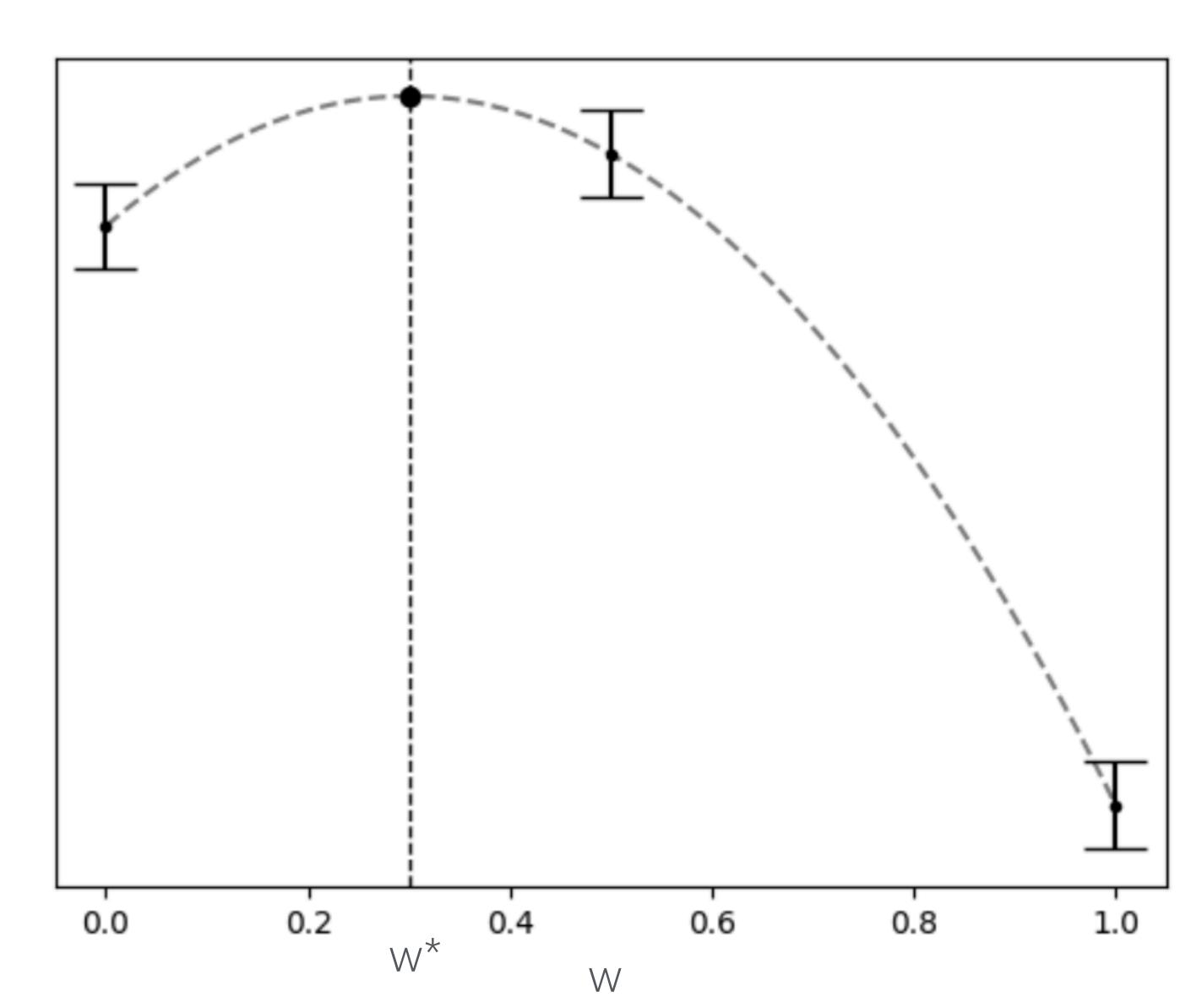
- Measure only three arms: $w \in \{0, 0.5, 1.0\}$
- Fit a parabola
- Guess/hope that max of parabola is true (expected) max



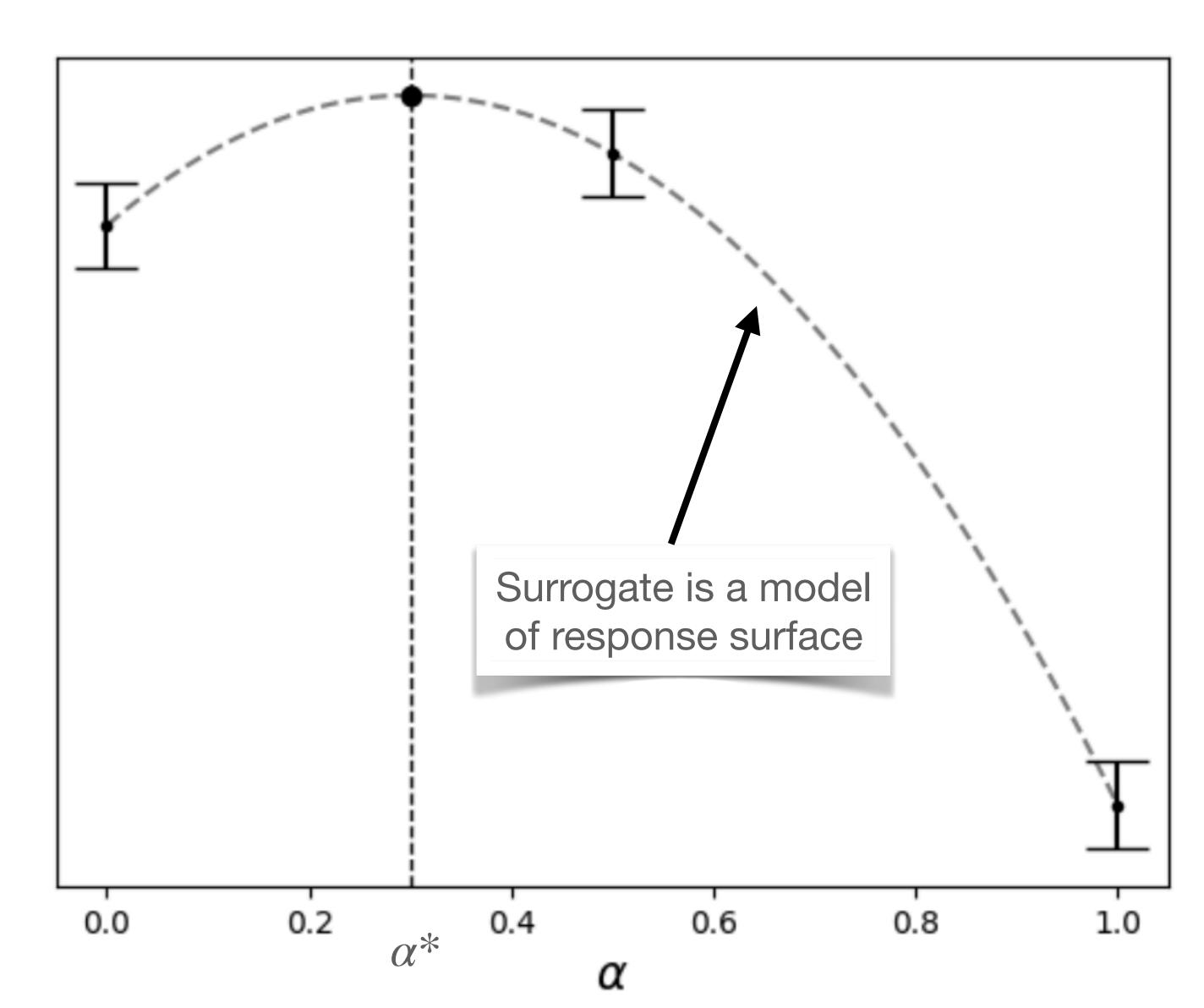
- Max of parabola: w = 0.3
- Run A/B test: A: Current prod version B: w = 0.3
- A/B test validates inference (or *invalidates*)



- True function being modeled is
 E[*BM*] vs. *w*
- Model estimates function
 - y axis: estimated BM, y(x)
 - x axis: parameter, w



- Unobservable, "true" BM function, *E[BM]*, called response surface
- Our fit parabola, y(x), called surrogate function
- Response surface method:
 - Model, optimize, validate



Compare A/B test to RSM

- A/B tests and MABs compare distinct versions of system
- RSM compares continuous family of systems
 - IOW, RSM finds optimal value of a continuous parameter

A/B Test	RSM
BM	BM
BM(A), BM(B)	BM(x)
<i>y</i> , <i>E</i> [<i>y</i>]	y(x), E[y(x)]

Compare A/B testing to RSM

- Parameter types:
 - Categorical: A, B, C, ...; true/false; red/green/blue; low/medium/high
 - Ordinal: 1, 2, 3, 4, ...
 - Continuous: [0.0, 1.0]; [-3.14, 3.14]; real, double, float
- Think of
 - A/B testing as optimization over a categorical parameter
 - RSM as optimization over a continuous parameter

Validate optimum

- Surrogate (model of RS) is only an approximation
- Validate by measuring at the predicted-best parameter
 - A/B test (or MAB) just best vs. old prod

Use N from A/B testing

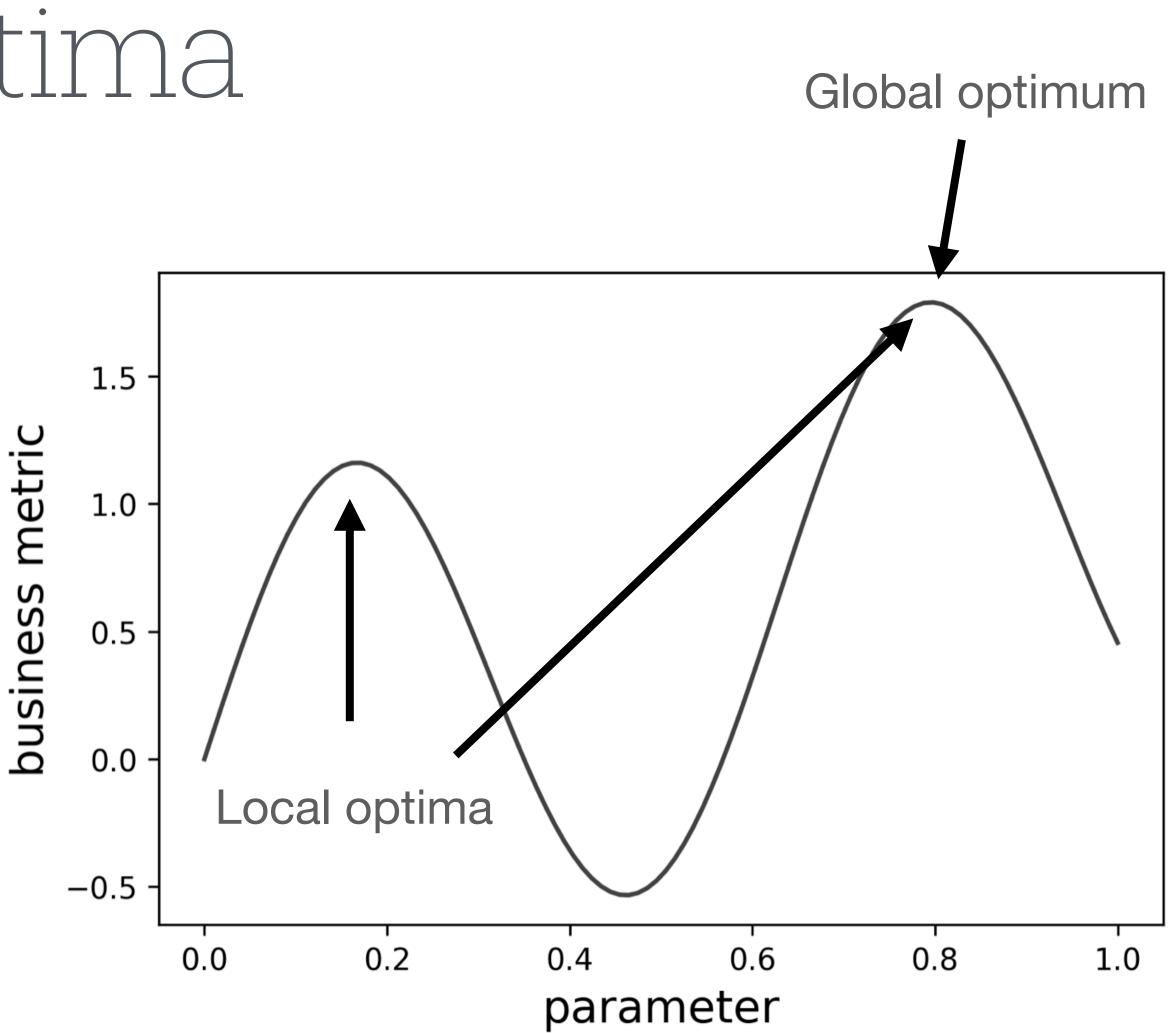
• RSM measurements are aggregate measurements

. Use
$$N = (\frac{2.5\hat{\sigma}}{PS})^2$$

- PS here says "If the BM of two parameters is within PS, I'll treat them as equivalent"
- Alternatively, "I want to be within PS of the true optimum"

Local vs. global optima

- Response surface might have multiple
 humps
- You want the highest hump
- RSM will only search locally
- Think hard about parameter range
- Local optimum is better than nothing

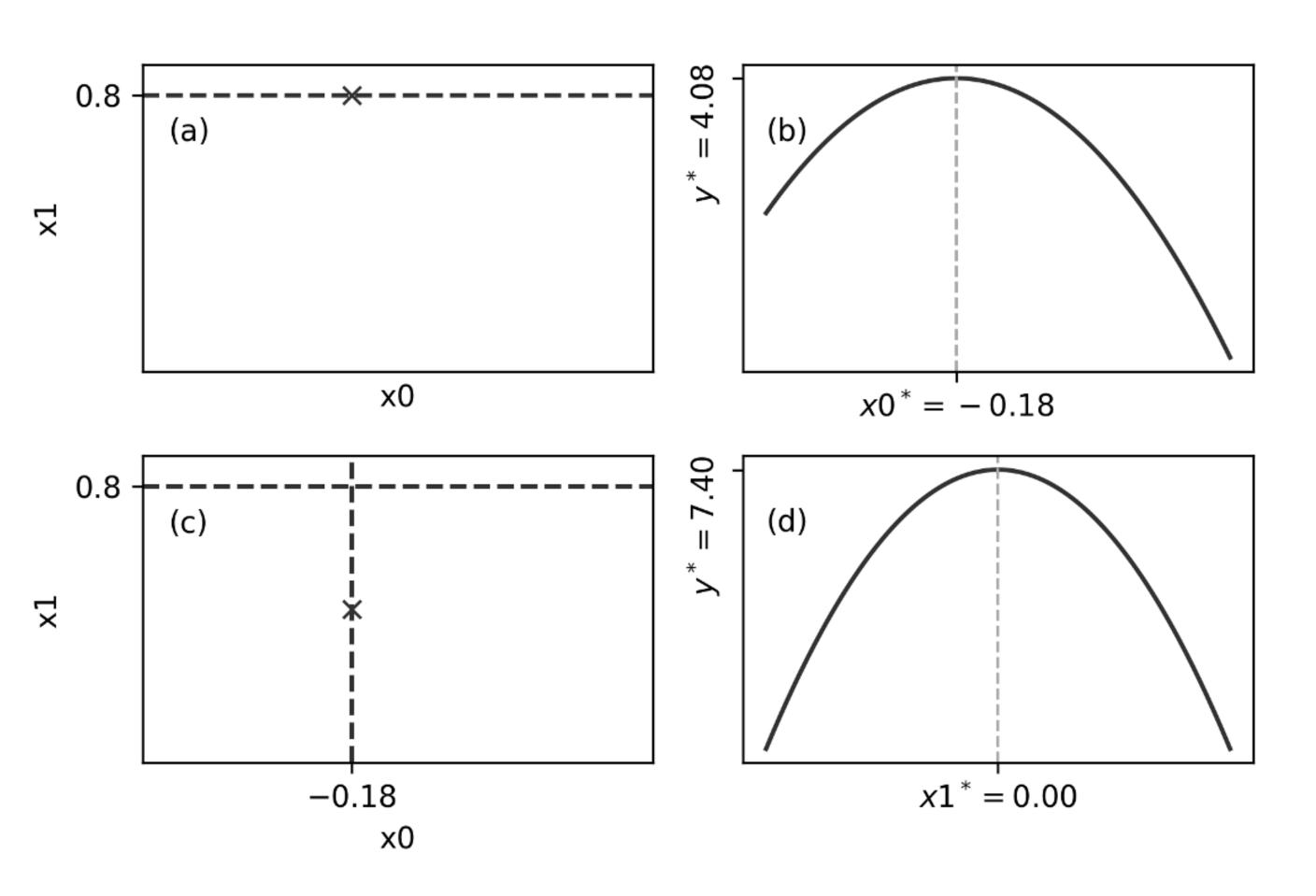


Interactive, manual process

- Engineer chooses
 - Region of interest (ROI): range of parameter(s) to investigate
 - Design of experiment: which specific parameter values to measure
 - Form of model parabola? multiple parameters
- May make decisions via visualization of surrogate
- ROI "recentered" on each iteration

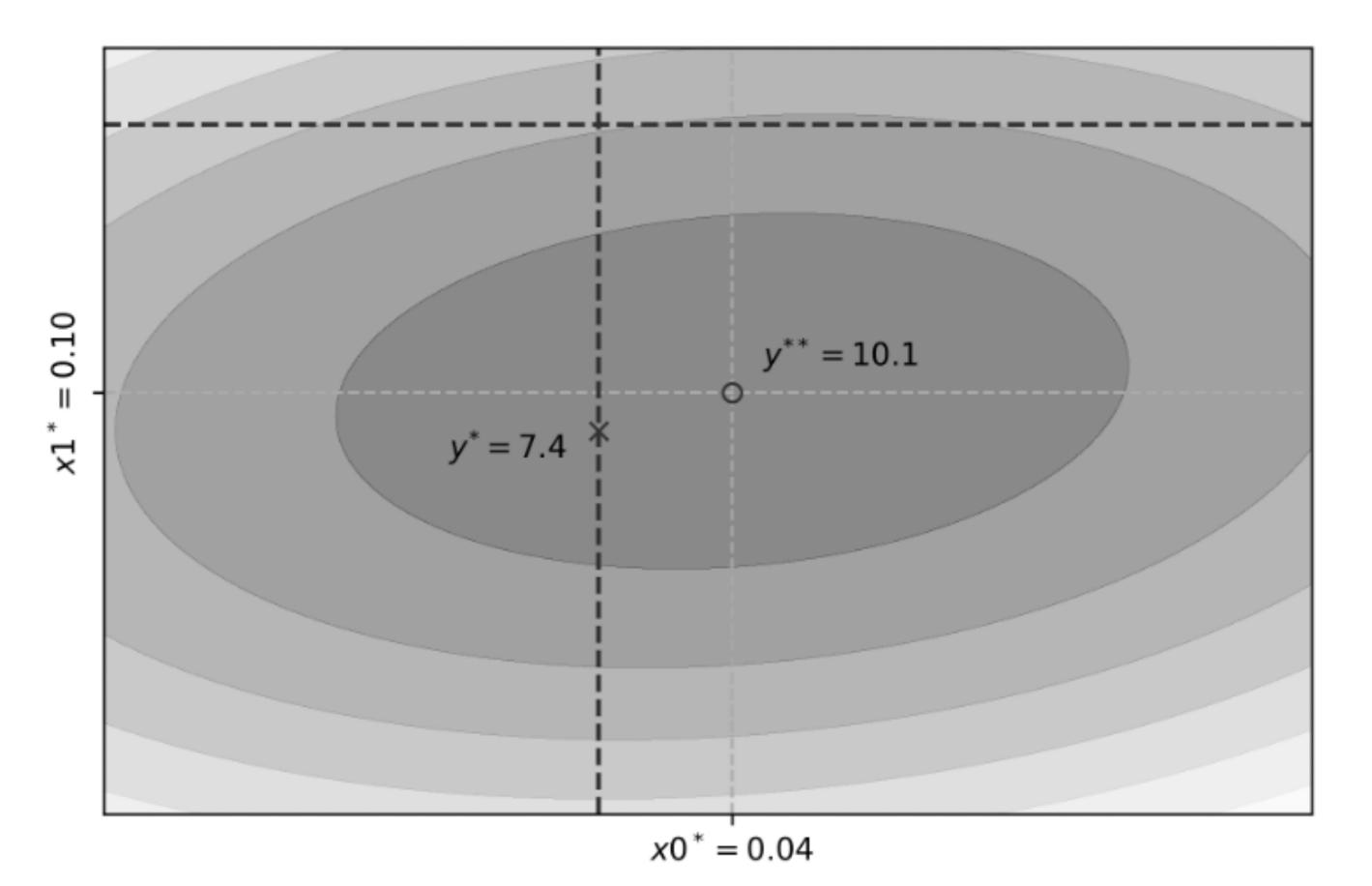
Multiple parameters

- $E \times x_0, x_1$
- Optimize x_0
- Optimize x_1
- OFAT: One factor at a time
 - Suboptimal approach



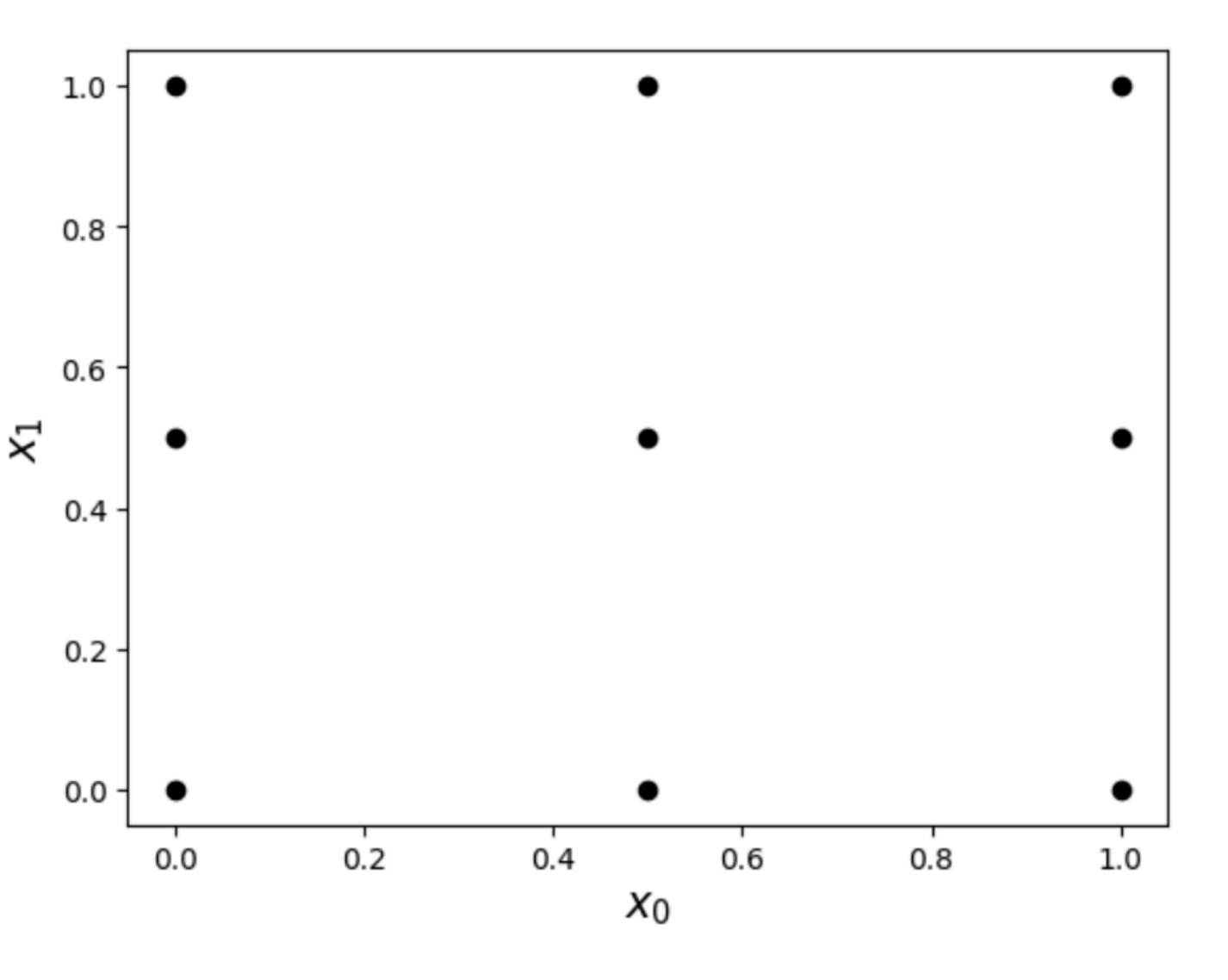
Multiple parameters

- OFAT finds $y^* = 7.4$
- RSM applied simultaneously to x_0, x_1 finds $y^* = 10.1$
- Realistically:
 - System has **many** parameters
 - "A few at a time" is typically as good as it gets



Two-parameter RSM

- Two parameters (dimensions)
 - Take 9 measurements on a grid
 - Fit surrogate $y(x_0, x_1)$
 - Optimize to find x_0^*, x_1^*
 - A/B test A=current, B= x_0^*, x_1^*



- Surrogate model: linear regression
- Ex: $y = \beta_0 + \beta_1 x + \varepsilon$
 - Take measurements $\{(y_0, x_0), (y_1, x_1), (y_2, x_2), \dots, (y_m, x_m)\}$
 - Fit model

$$\beta_0 = \frac{\sum_i y_i}{m}, \beta_1 = \frac{\sum_i x_i y_i}{\sum_i x_i x_i}$$

• Parabola: $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$

Measurements, not observations

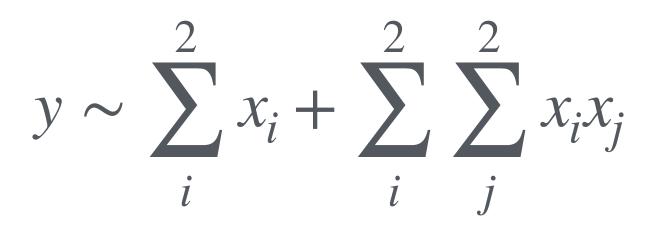
• Two parameters (dimensions, 2D)

•
$$y = \beta_0 + \beta_{1,0} x_0 + \beta_{1,1} x_1 + \beta_{2,0,0} x_0^2 + \beta_2$$

• notation:
$$y \sim x_0 + x_1 + x_0^2 + x_1^2 + x_0 x_1$$

even better:
$$y \sim \sum_{i}^{2} x_{i} + \sum_{i}^{2} \sum_{j}^{2} x_{i}x_{j}$$

 $\beta_{2,1,1}x_1^2 + \beta_{2,0,1}x_0x_1 + \varepsilon$



• Fit:
$$\vec{\beta} = (X^{\mathsf{T}}X)^{-1}(X^{\mathsf{T}}y)$$
 First c

- NumPy: beta = np.linalg.inv(X.T @ X) @ (X.T @ y)
- Works for any number of dimensions (parameters)

column of X is all ones

• More parameters



- Too many terms for only a few measurements
- Use automated variable selection and/or domain knowledge to limit terms

Summary

- RSM introduces
 - Surrogate: model of response function
 - Optimization of surrogate
- RSM is interactive/manual
 - Engineer decides ROI, design, and form of surrogate
- A/B testing : categorical :: RSM : continuous